176 research outputs found

    A model for the wind direction signature in the stokes smissin sector from the ocean surfaces at microwave frequencies

    Get PDF
    This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53/spl deg/ incidence angle and with JPL's WINDRAD measurements at incidence angles from 30/spl deg/ to 65/spl deg/, and at wind speeds from 2.5 to 11 m/s.Peer ReviewedPostprint (published version

    Wind direction azimuthal signature in the stokes emission vector from the ocean surface at microwave frequencies

    Get PDF
    Includes bibliographical references (page 431).An ocean polarimetric emission model is presented. It is found that skewness and upwind/cross-wind rms slopes are responsible for the first and second azimuthal harmonic, respectively. Atmospheric effects contribute significantly at low wind speeds, and at horizontal polarization at certain observation angles. Simulation results compare favorably with reported JPL-WINDRAD measurements

    A model of the wind direction signature in the Stokes emission vector from the ocean surface at microwave frequencies

    Get PDF
    This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.Peer Reviewe

    Risk-Based Bridge Inspection Practices

    Get PDF
    Improving bridge safety, reliability, and the allocation of bridge inspection resources are the goals of the proposed risk-based bridge inspection practices. Currently, most bridges in the United States are inspected at a fixed calendar interval of 24 months, without regard to the condition of the bridge. Newer bridges with little or no damage are inspected with the same frequency as older, more deteriorated bridges thus creating inefficiency in the allocation of inspection resources. The proposed methodology incorporates reliability theory and expert elicitation from the Indiana Department of Transportation’s Risk Assessment Panel, developed during this research, to rationally determine bridge inspection needs. Assessments are made based on the likelihood and consequence of failure for specific bridge components. The likelihood of failure is determined through attributes based on design, loading, and condition characteristics while the consequence of failure is based on expected structural capacity, public safety, and serviceability. By combining the expressions of likelihood and consequence for each component, an optimum inspection interval for the entire bridge can be determined through the use of risk matrices. The methodology was evaluated through case studies involving Indiana bridges. Over 30 years of historical inspection reports were utilized in the back-casting process to evaluate deterioration levels and assess the adequacy of the risk criteria. Results of the case studies conducted during the research indicated that the risk analysis procedures provided suitable inspection intervals ranging from 24 to 72 months for Indiana bridges

    Mesopore etching under supercritical conditions – A shortcut to hierarchically porous silica monoliths

    Get PDF
    Hierarchically porous silica monoliths are obtained in the two-step Nakanishi process, where formation of a macro microporous silica gel is followed by widening micropores to mesopores through surface etching. The latter step is carried out through hydrothermal treatment of the gel in alkaline solution and necessitates a lengthy solvent exchange of the aqueous pore fluid before the ripened gel can be dried and calcined into a mechanically stable macro mesoporous monolith. We show that using an ethanol water (95.6/4.4, v/v) azeotrope as supercritical fluid for mesopore etching eliminates the solvent exchange, ripening, and drying steps of the classic route and delivers silica monoliths that can withstand fast heating rates for calcination. The proposed shortcut decreases the overall preparation time from ca. one week to ca. one day. Porosity data show that the alkaline conditions for mesopore etching are crucial to obtain crack-free samples with a narrow mesopore size distribution. Physical reconstruction of selected samples by confocal laser scanning microscopy and subsequent morphological analysis confirms that monoliths prepared via the proposed shortcut possess the high homogeneity of silica skeleton and macropore space that is desirable in adsorbents for flow-through applications

    On the association of terrestrial gamma-ray bursts with lightning and implications for sprites

    Get PDF
    Includes bibliographical references (page [1020]).Measurements of ELF/VLF radio atmospherics (sferics) at Palmer Station, Antarctica, provide evidence of active thunderstorms near the inferred source regions of two different gamma-ray bursts of terrestrial origin [Fishman et al., 1994]. In one case, a relatively intense sferic occurring within ±1.5 ms of the time of the gamma-ray burst provides the first indication of a direct association of this burst with a lightning discharge. This sferic and many others launched by positive cloud-to-ground (CG) discharges and observed at Palmer during the periods studied exhibit 'slow tail' waveforms, indicative of continuing currents in the causative lightning discharges. The slow tails of these sferics are similar to those of sferics originating in positive CG discharges that are associated with sprites

    Evidence for continuing current in sprite-producing cloud-to-ground lightning

    Get PDF
    Includes bibliographical references (page 3642).Radio atmospherics launched by sprite producing positive cloud-to-ground lightning flashes and observed at Palmer Station, Antarctica, exhibit large ELF slow tails following the initial VLF portion, indicating the presence of continuing currents in the source lightning flashes. One-to-one correlation of sferics with NLDN lightning data in both time and arrival azimuth, measured with an accuracy of ±1° at ~12,000 km range, allows unambiguous identification of lightning flashes originating in the storm of interest. Slow-tail measurements at Palmer can potentially be used to measure continuing currents in lightning flashes over nearly half of the Earth's surface

    Mechanism of ELF radiation from sprites

    Get PDF
    Includes bibliographical references (page 3496).Charge and current systems associated with sprites constitute a part of the large scale atmospheric electric circuit, providing a context for physical understanding of recently discovered ELF radiation originating from currents flowing within the body of sprites. It is shown that the impulse of the electric current driven in the conducting body of the sprite by lightning generated transient quasi-electrostatic fields produces significant electromagnetic radiation in the ELF range of frequencies, comparable to that radiated by the causative lightning discharge

    Observations of the relationship between sprite morphology and in-cloud lightning processes

    Get PDF
    [1] During a thunderstorm on 23 July 2003, 15 sprites were captured by a LLTV camera mounted at the observatory on Pic du Midi in the French PyrĂ©nĂ©es. Simultaneous observations of cloud-to-ground (CG) and intracloud (IC) lightning activity from two independent lightning detection systems and a broadband ELF/VLF receiver allow a detailed study of the relationship between electrical activity in a thunderstorm and the sprites generated in the mesosphere above. Results suggest that positive CG and IC lightning differ for the two types of sprites most frequently observed, the carrot- and column-shaped sprites. Column sprites occur after a short delay (<30 ms) from the causative +CG and are associated with little VHF activity, suggesting no direct IC action on the charge transfer process. On the other hand, carrot sprites are delayed up to about 200 ms relative to their causative +CG stroke and are accompanied by a burst of VHF activity starting 25–75 ms before the CG stroke. While column sprites associate with short-lasting (less than 30 ms) ELF/VLF sferics, carrot sprites associate with bursts of sferics initiating at the time of the causative +CG discharge and persisting for 50 to 250 ms, indicating extensive in-cloud activity. One carrot event was found to be preceded by vigorous IC activity and a strong, long-lived cluster of ELF/VLF sferics but lacking a +CG. The observations of ELF/VLF sferic clusters associated with lightning and sprites form the basis for a discussion of the reliability of lightning detection systems based on VHF interferometry.Peer ReviewedPostprint (published version
    • 

    corecore